Convergence of directed random graphs to the Poisson-weighted infinite tree
نویسنده
چکیده
Weconsider a directed graph on the integerswith a directed edge fromvertex i to j present with probability n−1, whenever i < j , independently of all other edges. Moreover, to each edge (i, j) we assign weight n−1(j − i). We show that the closure of vertex 0 in such a weighted random graph converges in distribution to the Poisson-weighted infinite tree as n → ∞. In addition, we derive limit theorems for the length of the longest path in the subgraph of the Poisson-weighted infinite tree which has all vertices at weighted distance of at most ρ from the root.
منابع مشابه
Invasion Percolation on the Poisson-weighted Infinite Tree by Louigi Addario-berry1,
We study invasion percolation on Aldous’ Poisson-weighted infinite tree, and derive two distinct Markovian representations of the resulting process. One of these is the σ →∞ limit of a representation discovered by Angel et al. [Ann. Appl. Probab. 36 (2008) 420–466]. We also introduce an exploration process of a randomly weighted Poisson incipient infinite cluster. The dynamics of the new proces...
متن کاملPoisson-dirichlet Branching Random Walks
We determine, to within O(1), the expected minimal position at level n in certain branching random walks. The walks under consideration have displacement vector (v1, v2, . . .) where each vj is the sum of j independent Exponential(1) random variables and the different vi need not be independent. In particular, our analysis applies to the Poisson-Dirichlet branching random walk and to the Poisso...
متن کاملResolvent of large random graphs
We analyze the convergence of the spectrum of large random graphs to the spectrum of a limit infinite graph. We apply these results to graphs converging locally to trees and derive a new formula for the Stieljes transform of the spectral measure of such graphs. We illustrate our results on the uniform regular graphs, Erdös-Renyi graphs and preferential attachment graphs. We sketch examples of a...
متن کاملIsing models on locally tree-like graphs
We consider Ising models on graphs that converge locally to trees. Examples include random regular graphs with bounded degree and uniformly random graphs with bounded average degree. We prove that the ‘cavity’ prediction for the limiting free energy per spin is correct for any temperature and external field. Further, local marginals can be approximated by iterating a set of mean field (cavity) ...
متن کاملLeft and right convergence of graphs with bounded degree
2 Preliminaries 2 2.1 Homomorphism numbers and densities . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Local convergence of a graph sequence . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Chromatic polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 Subtree counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.5 Weight...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Probability
دوره 53 شماره
صفحات -
تاریخ انتشار 2016